Quisqualate induces an inward current via mGluR activation in neocortical pyramidal neurons.

نویسندگان

  • Z Chu
  • J J Hablitz
چکیده

Activation of metabotropic glutamate receptors (mGluRs) has multiple effects on the excitability of pyramidal neurons in rat frontal neocortex. Synaptic transmission and intrinsic excitability are both affected. During studies of the effects of quisqualate on synaptic activity, it was observed that quisqualate also induced a slow inward current. Whole-cell patch clamp recordings were obtained from layer II/III pyramidal neurons of neocortical slices in vitro. The bath solution contained APV, CNQX and bicuculline to block ionotropic glutamate and GABA(A) receptors. At a holding potential of -70 mV, quisqualate (2 microM) induced an inward current of about 60 pA. The response was reversible upon washing. This current was associated with an increase in membrane conductance and was still seen in the presence of TTX (0.5 microM). Bath application of the nonselective mGluR antagonist, (R, S)-alpha-methyl-4-carboxyphenyglycine (MCPG, 200-500 microM) reduced the current by 70%. Other mGluR agonists (ACPD, DHPG, L-CCG-1 and L-AP4) did not induce a significant inward current at the concentrations tested. The current-voltage relation of the quisqualate-induced current was linear with a reversal potential near 0 mV suggesting involvement of nonselective cation channels. The quisqualate-induced inward current was markedly reduced (72%) with 200 microM GDP-beta-S in the pipette solution, indicating that it is a postsynaptic phenomenon mediated by a G-protein dependent mechanism. These results suggest that mGluRs can directly increase the postsynaptic excitability of pyramidal cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group I mGluR activation turns on a voltage-gated inward current in hippocampal pyramidal cells.

A unique property of the group I metabotropic glutamate receptor (mGluR)-induced depolarization in hippocampal cells is that the amplitude of the depolarization is larger when the response is elicited at more depolarized membrane potentials. Our understanding of the conductance mechanism underlying this voltage-dependent response is incomplete. Through the use of current-clamp and single-electr...

متن کامل

Activation of group I mGluRs increases spontaneous IPSC frequency in rat frontal cortex.

The effect of metabotropic glutamate receptor (mGluR) activation on inhibitory synaptic transmission was examined by using whole cell patch-clamp recordings. Spontaneous (s) and miniature (m) inhibitory postsynaptic currents (IPSCs) were recorded from visually identified layer II/III pyramidal neurons in rat neocortex in vitro. Excitatory postsynaptic currents (EPSCs) were blocked by using bath...

متن کامل

Electrophysiological study of amygdale-induced changes in the excitability of CA1 hippocampal pyramidal neurons in male adult rats

Introduction: Many studies have shown that amygdala kindling produces synaptic potentiation by induction of changes in the neuronal electrophysiological properties and inward currents both in epileptic focus and in the areas which are in connection with the epileptic focus and have important role in seizure development and progression such as hippocampal CA1 region. However, cellular mechani...

متن کامل

Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation.

Current responses to N-methyl-D-aspartate (NMDA) in layer V pyramidal neurons of the rat prefrontal cortex were potentiated by the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). The failure of these nucleotides to induce inward current on fast local superfusion suggested the activation of P2Y rather than P2X receptors. The potentiation by ATP persisted i...

متن کامل

1S, 3R-ACPD induces a region of negative slope conductance in the steady-state current-voltage relationship of hippocampal pyramidal cells.

Synaptic responses mediated by metabotropic glutamate receptors (mGluRs) display a marked voltage-dependent increase in amplitude when neurons are moderately depolarized beyond membrane potential. We have investigated the basis for this apparent nonlinear behavior by activating mGluRs with 1S, 3R-1-aminocyclopentane-1, 3-dicarboxylate (1S, 3R-ACPD; 10 microM) in CA3 pyramidal cells from rat hip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain research

دوره 879 1-2  شماره 

صفحات  -

تاریخ انتشار 2000